

Sport conditioning for children

Khosrow Ebrahim
Professor of sport science
Shahid Beheshti University

Problems & limitation with children's training

- Ethical consideration
- Limited number of investigation
- Growing body of information on the possibility of musculoskeletal injury as a result of specific types of sport training

Physical performance in young athletes

Things we should focus on:

- Motor ability
- Strength
- Pulmonary function
- Cardiovascular function
- Aerobic capacity
- Running economy
- Anaerobic capacity
- Thermal stress

Motor ability and strength trend in young athletes

- Motor ability increase for the first 18 years
- Strength improves with M.mass increase with age
- Gain in strength also depend on neural maturation, "myelination"

Training the young athlete

The issues of most concern for young athlete

- Resistance (strength) training
- Aerobic training
- Anaerobic training

Strength gain during prepubescent

- Improved motor skill coordination
- Increased motor unit activation
- Other undetermined neurological adaptation

Basic guidelines for resistance exercise progression in children

- 7 or younger: introducing basic exercises with little or no weight
- 8-10: gradually increase the number of exercise
 & load
- 11-13: teach all basic exercise, continue progressive loading, introduce more advance exercise
- 14-15: progress to more advance programs, add sport-specific component, increase volume
- 16 or older: move to entry-level adult programs

Resistance training in children

- Strength training can only be effective in the postpubertal age.
- Improvement in strength during the prepubertal age, presumed to be neural in origin and not accompanied by increases in muscle size.
- A properly supervised resistance training program has been found to be beneficial in the pediatric population with no harm to the epiphyseal plates.

Aerobic and anaerobic training in children

- Aerobic capacity improves less than adults with aerobic training
- Anaerobic capacity appears to improve following training:
 - * increase of PC-ATP and glycogen resting level.
 - * increase of PFK activity
 - * increase of M.B. lactate levels

Aerobic trainability

Possible explanations

- Biologic mechanisms
 plasma volume & cellular aerobic capacity are two reasonable candidate to explain maturity related difference.
- Increase in VO_{2max} in pediatric studies are generally, no more than one third of those expected in adults.

Trainability to short-burst activities

- Children can improve their power production, but whether is metabolic, strength or even aerobic adaptations is not clear.
- It is not possible to judge whether children are more or less capable of improvement in the various forms of anaerobic fitness than adults.

Thermoregulation in children during physical activity

- Children generate more heat per body mass than adults.
- Sweating rate is significantly less in children (at least in boys).
- Less prone to dehydration.
- Children tolerate exercise, in very hot climate more poorly than adults.

Pathways for the training response

Repeated muscle contractions (training)

Mediator A

Gene action B

Mediator C

heat, catecholamines muscle stretch, lactate?

gene to trigger the adaptation process

anabolic hormones enzyme production

Phenotypic expression D

protein synthesis, augmented neural activity plasma volume

Long term planning

		Age 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24						
Intensity Phase and Type		Initiation		Athletic		Speciali- zation		High Performance
#5	Rope skipping	-		10.0				
	Hops on spot		4					
	Simple bounding	====	83	4				->
#4	Med. ball throws			*				-
	Baseball throws			-				
	Low-short hops				*			-
	Low-short steps				4			>
	Two leg jumps				4	-		-
	Hops/steps				4			-
	Hops and steps					*		-
	Two leg jumps (h)					*		-
	Upper body					~		
#3	Med. ball dist.					4		
lin J	Shot throws					4		
	Low drop/react.					4		
	Others							
#2	Drop jumps						4	
	Med. ball shocks	Ü					4	-
	Others							
#1	High reactive						4	
	Shock hits							*
	Heavy implem.							

Figure 34. The periodization of long-term athletic development. (The proposed phases consider the normal dynamics of maturation.)

4 HIGH PERFORMANCE

SCIENTIFIC AND METHODICAL TRAINING

3

2 LONG TERM PLANNING

TALENT IDENTIFICATION

Figure 87. The essential steps required to achieve high performance.

Activity recommendations for children

- Ex. Type: large muscle, rhythmic, aerobic
- Frequency: 3-5 day/ wk
- Intensity: 50-80% VO_{2max}, functional capacity.
- Duration: 30-50 min

Specializing versus playing two or more sports in the early years

 Playing two or three sports in high school is an advantage. Those athletes experience a variety of competition that one-sport players do not get.

tom osborne

 We love for our players to have played more than one sport in high school.

stella sampras

 I absolutely think that young athletes ought to play more than one sport. Parents are making them specialize way early.

bill clark

 The player who has only participated in volleyball has seldom has enough athletic experience to be good.

mark pavlik

Something to remember

- It is a grave mistake to submit children to the training programs of adults.
- Children are not simply small adults.

